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ABSTRACT

A diagnostic technique for monitoring the concentration of NO using

absorption of CO laser radiation has been developed and applied in a study

of the decomposition kinetics of NO. Simultaneous measurements of infra-

red emission by NO at 5.3 microns were also made to validate the laser

absorption technique. The data were obtained behind incident shocks in

NO-N20-Ar (or Kr) mixtures, with temperatures in the range 2400-4100
0 K.

Rate constants for dominant reactions were inferred from comparisons with

computer simulations of the reactive flow. i

INTRODUCTION 
H CW

The anticipated availability of tunable continuous-wave infrared a

lasers offers prospects for important new quantitative spectroscopic ot

techniques well suited for shock tube kinetics studies of infrared-active 
=

gases. One obvious advantage of tunable laser spectroscopy is high

specificity for a given chemical compound so that negligible interference

is produced by other constituents present in a mixture.
ot

To investigate the potential of tunable lasers for shock tube appli- M 0

cations we have constructed a discretely tunable CO laser and used it for m o

absorption measurements of NO, taking advantage of the near-coincidence of W H M

some NO vibration-rotation absorption lines and CO gas laser lines (refs. 4A 0

1, 2). In this paper we describe the experimental apparatus and 
compare H

simultaneous measurements of NO concentration obtained using laser absorp- =q

tion and infrared emission techniques. Some results for rate coefficients

relevant to NO decomposition kinetics are also presented. Z

EXPERIMENTAL I o

The experiments were done behind incident shock waves in a conven- 2 J >

tional, pressure-driven shock tube (15-cm internal diameter). Shock speeds

varied from about 1.3 to 1.8 mm/lsec, producing frozen-chemistry.temper-

atures of 2500-41000K and postshock pressures between .0.3 and 0.5 atmo-

spheres. Test gases consisted of NO in an excess of either Ar or Kr, with

a trace amount of N20 added in some experiments. The mixtures were pre- iw

pared manometrically and mixed immediately before each run.

A schematic of the experimental setup is shown in Fig. 1. The CO

laser was operated on a single vibration-rotation line at v=1935.48 cm
- 1  ia

(V=7-*6, J=12-13) with a typical output power of about 0.1 W. The absorp- n

tion line of NO is centered at V=1935.49 cm-1 (213/2, V=0, m=39/2) 
(ref. 1). o -I

Transmitted radiation is directed onto a photovoltaic InSb detector U L

'(liquid-nitrogen cooled). The data is displayed on an oscillogram, as

shown in Fig. 2a. The data displayed include the transmit intensity

I(t), the zero signal (laser blocked off), and the ab =

Io-I(t), where t is the time after shock arrival.
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The governing equation for absorption is the Beer-LaiLert 
Law

I I o exp(-BL[NO]) (1)

where Io and I are the incident and transmitted light fluxes 
and L is the

path length of the beam through the sample. The absorption coefficient B

is a function of temperature, pressure and composition and is essentially

zero before the shock arrives. For the small absorptions to be reported

here, the absorption is given approximately by

A(t)/A* = B[NO]I/(B[NO])* [NO]/[NO]* (2)

where the asterisk denotes some convenient reference condition. 
Here we

have elected to neglect the small changes in which occur on the time

scale of interest after the shock. Thus, for present purposes we can plot

A/A* and compare this directly with calculations of [NO)/[NO]*.

The infrared emission system has been described previously (refs. 3,4).

The emission from the fundamental vibration-rotation band of NO 
(at 5.3

microns) is isolated from N20 emission (4.5-micron band) using a 
filter

passing wavelengths greater than 5.0 microns. The detector is coupled to

an amplifier whose output is displayed on an oscilloscope. A typical

record is.shown in Fig. 2b.

For an ideal system, the output voltage of the amplifier V is propor-

tional to the intensity of spontaneous emission I, which in turn is pro-

portional for an optically thin gas to the product of 
the NO concentration

and the vibrational energy per unit concentration of NO, ev(T). 
For the

present we choose to neglect the influence of small 
temperature changes so

that V is linearly proportional to [NO] and we may conveniently plot

V/V* = [NO]/[NO]* (3)

for comparison with both the laser absorption data and computer calcula-

tions of the reacting flow.

RESULTS

Results based on the data of Fig. 2 are presented in Fig. 3. Here we

have plotted absorption and emission data and kinetic calculations 
of

[NO]/[NO]max, the maximum NO concentration providing a convenient reference

for normalization of the calculations and the absorption data. Because of

initial formation of additional NO during the decomposition of N20, the

peak value of [NO] occurs about 1 sec after shock arrival. Unfortunately,'

the emission data at 1 lsec is distorted by two nonideal effects, 
NO vi-

brational relaxation and a slight transient interference from N20 emission.

To minimize these effects, we have normalized the emission data to 
match

the kinetic calculations at 5 psec.

Kinetic calculations were made with the NASA Lewis kinetics Program

(ref. 5) using a nine-reaction scheme developed in a previous study 
(ref.3).

After the rapid decomposition of the initial N20, the rate-limiting step

for NO removal is the reaction

NO + 0 + N + 02.



The N20 was added in many of the experiments.-to serve as a 
quick source of

oxygen atoms, thereby enhancing the role of reaction 
1 in the overall NO

decomposition scheme. The calculated NO profile shown in Fig. 3 was

obtained by choosing thevalue of k1 so as to yield the best fit to the

data. All other rate constants were held fixed. Calculations testing

sensitivity to reasonable variations in other rate constants substantiated

this approach for present conditions. Results for k i and other rate con-

stants inferred from fits to the data from all the experiments will be

presented in the complete paper.

The good agreement in Fig. 3 between the two independent 
measurements

of [NO] serves to validate the laser absorption technique and also provides

some indication of the accuracy with which [NO] can be determined using

these methods. The interference in the NO emission data due to N20 emis-

sion, even in this relatively simple mixture and with a carefully'chosen

filter, emphasizes the merit of tunable laser spectroscopy.

Measured values for the absorption coefficient g were in the range

5-11 x 104'cm2 /mole, decreasing with increasing temperature. Detailed

results will be presented in the full paper.
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Fig.2 Typical data: CO laser

absorption (Fig. 2a) and NO IR

emission (Fig. 2b). V=1.53mm/

Ii.... isec, P 1=6.94 Torr (N20/NO/Kr =

0 ,.. ;,,,; 2.2/9.8/88), T2frozen = 40480 K.

In Fig. 2a the vertical sensi-

tivities are 50 and 5mV/div;

in Fig. 2b the sensitivity is

10mV/div.
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Fig. 3 Absorption and emission data and kinetic calculations 
of [NO]/[NO]max.

Shock conditions are the same as Fig.2: --- , Kinetic calculations with kl=

2.7xl09T exp(-38640/RT)cm3/mol-s;A, absorption 
data for A(t)/Amax;O, emis-

sion data for V/Vmax renormalized to match kinetic 
calculations at 5 psec.




